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Rotational Invariant Dimensionality
Reduction Algorithms

Zhihui Lai, Yong Xu, Member, IEEE, Jian Yang, Linlin Shen, and David Zhang, Fellow, IEEE

Abstract—A common intrinsic limitation of the traditional sub-
space learning methods is the sensitivity to the outliers and the
image variations of the object since they use the L2 norm as
the metric. In this paper, a series of methods based on the L2,1-
norm are proposed for linear dimensionality reduction. Since
the L2,1-norm based objective function is robust to the image
variations, the proposed algorithms can perform robust image
feature extraction for classification. We use different ideas to
design different algorithms and obtain a unified rotational invari-
ant (RI) dimensionality reduction framework, which extends the
well-known graph embedding algorithm framework to a more
generalized form. We provide the comprehensive analyses to
show the essential properties of the proposed algorithm frame-
work. This paper indicates that the optimization problems have
global optimal solutions when all the orthogonal projections of
the data space are computed and used. Experimental results on
popular image datasets indicate that the proposed RI dimension-
ality reduction algorithms can obtain competitive performance
compared with the previous L2 norm based subspace learning
algorithms.

Index Terms—Dimensionality reduction, image classification,
image feature extraction, rotational invariant (RI) subspace
learning.

I. INTRODUCTION

FEATURE extraction and dimensionality reduction meth-
ods have been paid much attention in past several decades.
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The classical linear dimensionality reduction methods such as
principle component analysis (PCA) [1]–[3] and linear dis-
criminant analysis (LDA) [4] and its variations [5], [6] are
widely used in the fields of pattern recognition, computer
vision, and data mining. It is known that these classical meth-
ods (i.e., PCA and LDA) only focus on the global structure
of a dataset in dimensionality reduction. With the fast devel-
opment of the manifold learning based techniques [7]–[10],
the local geometry structure has been taken into account in
designing different linear dimensionality reduction methods.
For example, locality preserving projection (LPP, also called
Laplacianfaces) [11] and orthogonal LPP [12] were proposed
for face recognition. Yan et al. [13] proposed a unified graph
embedding framework for linear and nonlinear dimension-
ality reduction, and marginal fisher analysis (MFA) and its
extension [14] were proposed the for face and gait feature
extraction.

All the above methods, however, use the L2 or Frobenius
norm based metric to characterize the scatter of the dataset,
thus these methods are sensitive to the outliers. Recently, other
measurement such as L1 norm was widely explored due to its
robustness in different applications. For example, the L1 norm
was used in sparse regression [15]–[17], sparse representation
classifier designation [18], [19], subspace learning [20]–[25],
sparse subspace learning [26], [27], and sparse coding for
image representation [28]. In addition, the sparse L1 graph
was also used in subspace learning, spectral clustering [29],
and label propagation [30]. But one drawback of these L1
norm based methods is that the L1 norm terms are just used
as the regularization and the L2 or Frobenius norm terms are
still dominant in the optimization problems. Thus, these meth-
ods are still sensitive to the outliers in a certain sense in
dimensionality reduction.

Although various L1 norm based subspace learning meth-
ods, such as those in [25] and [31]–[34], have shown promis-
ing performance, these methods still have some unsolved
problems. For example, some of them have very high com-
putational costs in computing the (local) optimal solutions,
and the theoretical relation between the optimal solutions of
L1 norm based methods and the traditional/classical ones was
still unclear. Recently, a new measurement called rotational
invariance (RI) L1 norm or L2,1 norm has attracted much
attention in the fields of patter recognition and computer
vision [35], multitask learning and tensor factorization [36].
Previous studies show that the pure L2,1 norm based regres-
sion is more robust than the L1 norm regression in pat-
tern recognition [37]–[39], and thus was widely used in

2168-2267 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:lai_zhi_hui@163.com
mailto:yongxu@ymail.com
mailto:csjyang@njust.edu.cn
mailto:llshen@szu.edu.cn
mailto:csdzhang@comp.polyu.edu.hk
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. Development route of the dimensionality reduction methods
mentioned in this paper.

joint feature selection and subspace learning [40]–[42], image
recognition [43], Web image annotation [44], and multime-
dia data understanding [45]. The brief development route of
the dimensionality reduction methods mentioned in this paper
is shown in Fig. 1.

Robustness is an important issue in feature extraction. One
tractable method is to introduce the robust measurement, i.e.,
replace the Frobenius norm with other norms which are robust
to the outliers. A relative ideal norm for feature extraction
and recognition should contain the following aspects: 1) the
measurement should be robust to the outliers; 2) the derived
model using this measurement is easy to solve; and 3) it is
better to bridge the strong theoretical connections between the
previous methods and the new ones using the introduced norm.
Based on these three aspects, the RI L1 norm or L2,1 norm is
a very suitable candidate owing to its robustness to outliers and
different variations in the dataset [36]–[39], the simplicity for
solving the derived models as indicated in [38], and the close
theoretical connections to previous methods (which will be
shown on Section III of this paper).

This paper focuses on designing the robust linear dimen-
sionality reduction methods using the RI L1 norm or L2,1
norm. The difference between this paper and the previous
works is that this paper not only focuses on a set of concrete
robust subspace learning methods, but also builds a unified
framework to conclude the proposed methods using the RI L1
norm or L2,1 norm. From the algorithm aspect, the significant
difference between the proposed algorithms and the previous
ones is the algorithms presented in this paper can achieve its
robustness automatically or intrinsically (without introducing
any other parameters).

The main contributions of this paper are as follows.
1) We propose four representative RI subspace learning

methods, i.e., RI PCA (RIPCA), RI LDA (RILDA), RI
LPP (RILPP), and RI MFA (RIMFA) for image feature
extraction. Besides these newly proposed algorithms, we
also propose a unified robust and RI subspace learning
framework. It is shown that the framework proposed in
this paper indeed extends the well-known graph embed-
ding framework proposed in [13] to a more general form
for linear dimensionality reduction.

2) The comprehensive analyses, including the convergence,
computational complexity, and the theoretical connec-
tions between this framework and the previous graph
embedding algorithm framework, are presented to show
the essential properties of the proposed algorithm frame-
work. And more importantly, the optimization problems
derived by the new metric are easy to solve and the

codes are also very easy to implement (the codes can be
downloaded from http://www.scholat.com/laizhihui).

3) Extensive experiments show that the proposed RI sub-
space learning algorithms perform better than the previ-
ous ones for image feature extraction in most cases.

The rest of this paper is organized as follows. In Section II,
four RI subspace learning algorithms are proposed. The the-
oretical analyses of the proposed framework are presented in
Section III. Experiments are carried out in Section IV to test
these RI subspace learning algorithms where the objects in
the databases have different variations, and the conclusions
are given in Section V.

II. PROPOSED ALGORITHMS

In this section, some notations are given at first and then
the algorithms are presented. Let matrix X = [x1, x2, . . . , xN]
be the data matrix including all the training samples {xi}N

i=1 ∈
Rm in its columns. In practice, the feature dimension m is
often very high. The goal of feature extraction is to transform
the data from the originally high-dimensional space to a low-
dimensional one. In other words, sample x ∈ Rm should be
transformed into y ∈ Rd (d � m) by using

y = UTx ∈ Rd (1)

where U = (u1, u2, . . . , ud) and ui(i = 1, . . . , d) is an
m-dimension column vector.

A. Definitions of Different Norms

For a given matrix A = [aij] ∈ Rn×m, we denote the ith row
of A by Ai. The Frobenius norm of matrix A is defined as

‖A‖F =
√
√
√
√

n
∑

i=1

m
∑

j=1

a2
ij =

√
√
√
√

n
∑

i=1

∥
∥Ai

∥
∥

2
2. (2)

It can be seen that the sensitivity of the Frobenius norm comes
from the squared operation, which makes the larger values of
‖Ai‖2

2 significantly dominate the final result. Differing from
the Frobenius norm, L1-norm of a matrix A is defined as

‖A‖1 =
n
∑

i=1

m
∑

j=1

∣
∣aij
∣
∣. (3)

The L2,1-norm of a matrix is defined as

‖A‖2,1 =
n
∑

i=1

√
√
√
√

m
∑

j=1

a2
ij =

n
∑

i=1

∥
∥Ai

∥
∥

2. (4)

Since for any rotational matrix R, ‖AR‖2,1 = ‖A‖2,1,
L2,1-norm is RI (this is the reason why the proposed algo-
rithms are called as RI in this paper). As indicated in [38], the
robustness of the L2,1-norm or RI L1-norm is originated from
its special definition, where there is no squared operation. Note
that, if A degrades to be a high-dimensional row vector, its
L2,1-norm or RI L1-norm will degrade to the Frobenius norm.

http://www.scholat.com/laizhihui
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TABLE I
SUMMARY OF THE ALGORITHMS

B. Discussions and the Motivations of This Paper

Yan et al. [13] proposed a general framework to unify the
subspace learning methods, including PCA, LDA, LPP, and
MFA, by using the model

min
U

tr
[

UTX
(

D̄w − W̄w)XTU
]

(5)

s.t. tr
(

UTX
(

D̄b − W̄b
)

XTU
)

= cons (6)

where cons denotes the constant, W̄w and W̄b are the graphs
defined on the dataset, and D̄b

ii = ∑

i W̄b
ij , D̄w

ii = ∑

i W̄w
ij . The

optimal solutions of the above problem can be given by the
following generalized eigenequation:

X
(

D̄w − W̄w)XTU = X
(

D̄b − W̄b
)

XTU�. (7)

Many linear dimensionality reduction methods can be
included in this graph embedding algorithm framework [13].
However, as it is mentioned in Section I, the crucial draw-
back of this framework is its sensitiveness to the outliers
or the variations of the images since it uses the L2 or
Frobenius norm as the metric [35], [36], [38], [39]. The draw-
back of the previous framework (or previous subspace learn-
ing algorithms) inspires us to develop new framework (or
algorithms) which is robust in linear dimensionality reduc-
tion. Motivated by the previous robust subspace learning

algorithms [35], [36], [38], [39], [41], [43], we introduce the
RI L1 norm or L2,1 norm to develop a set of algorithms for
robust linear dimensionality reduction. Four simple but effec-
tive and efficient algorithms (i.e., RIPCA, RILDA, RILPP, and
RIMFA) are first proposed and then a unified framework is
obtained for robust linear dimensionality reduction. For ease
of reading and comparison, all the detailed information of the
four algorithms presented in this paper will be summarized in
Table I and the algorithm steps are shown in Table II.

C. RIPCA

PCA aims to find a set of projections that can characterize
the most of the variances of the data points by using the square
norm. But for RIPCA, the RI L1-norm (i.e., L2,1-norm) is used
as the measurement among the data points. According to the
definition of L2,1-norm and the formulations presented in [38],
the RI L1-norm total scatter value is defined as follows:

N
∑

i=1

∥
∥
(

xT
i − x̄T)U

∥
∥

2 =
∥
∥
∥
∥
∥
∥

(

xT
1 − x̄T

)

U
· · ·
(

xT
N − x̄T

)

U

∥
∥
∥
∥
∥
∥

2,1

= tr
(

UTXRtDRtX
T
RtU

) = tr
(

UTSRtU
)

(8)
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TABLE II
ALGORITHM STEPS OF RI SUBSPACE LEARNING FRAMESORK

TABLE III
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, AND DIMENSION]

OF DIFFERENT ALGORITHMS ON FERET DATA SET

where x̄ denotes the mean of the data and SRt = XRtDRtXT
Rt is

referred to RI total scatter matrix and diagonal matrix

DRt = diag

(

1

2
∥
∥
(

xT
1 − x̄T

)

U
∥
∥

2

, . . . ,
1

2
∥
∥
(

xT
N − x̄T

)

U
∥
∥

2

)

and

XRt = ((x1 − x̄), . . . , (xN − x̄)).

PCA seeks projection directions with maximal variances. In
other words, it finds and removes the projection direction
with minimal variance [13]. Similarly, RIPCA also finds the
minimal variance directions and discards them in dimensional-
ity reduction. We alternatively use the minimum optimization
problem (9) for the further analyses in this paper. Thus, the
objective function of RIPCA can be presented as

min
U

tr
(

UTXRtDRtX
T
RtU

)

s.t. UTU = I. (9)

As a result, the optimal projections needed to be removed
in RIPCA are the eigenvectors corresponding to the smallest
eigenvalus of the following standard eigenequation:

XRtDRtX
T
RtU = U� (10)

where U = [u1, u2, . . . , um−d, um−d+1, . . . , um]
is an m × m matrix containing all the eigen-
vectors corresponding to the eigenvalue matrix
� = diag(λ1, λ2, . . . , λm−d, λm−d+1, ..., λm), where
λ1 ≤ λ2 ≤ ... ≤ λm. Then the optimal projection matrix of
RIPCA is U∗ = [um−d+1, . . . , um]. In other words, the projec-
tions u1, u2, . . . , um−d that characterize the minimal variance
should be discarded. Thus, one can get the low-dimensional
(i.e., d dimensional) representation for the original sample x

by using y = U∗Tx. It is easy to find that the DRt in (10) is
related to the variable U, thus an iterative strategy is used
to compute the optimal U∗. The computational procedures
are shown in Table III. Since all the proposed methods are
in the same way, we will not mention this point if it is not
necessary.

D. RILDA

Similar to classical LDA algorithms, RILDA needs to define
the RI between-class and within-class scatter values. The RI
between-class scatter value is defined as

c
∑

i=1

Ni
∥
∥
(

x̄T
i − x̄T)U

∥
∥

2 =
∥
∥
∥
∥
∥
∥

N1
(

x̄T
1 − x̄T

)

U
· · ·
Nc
(

x̄T
c − x̄T

)

U

∥
∥
∥
∥
∥
∥

2,1

= tr
(

UTXRbDRbXT
RbU

) = tr
(

UTSRbU
)

(11)

where x̄i is the mean of the ith class, SRb = XRbDRbXT
Rb is

referred to RI between-class scatter matrix, and the data matrix

XRb = (N1(x̄1 − x̄), . . . , Nc(x̄c − x̄))

the diagonal matrix

DRb = diag

(

1

2
∥
∥N1

(

x̄T
1 − x̄T

)

U
∥
∥

2

, . . . ,
1

2
∥
∥Nc

(

x̄T
c − x̄T

)

U
∥
∥

2

)

.

Similarly, the within-class scatter value is defined as
c
∑

i=1

Ni∑

j=1

∥
∥
∥
∥

(

x j
i − x̄i

)T
U

∥
∥
∥
∥

= ∥
∥XT

RwU
∥
∥

2,1

= tr
(

UTXRwDRwXT
RwU

)

= tr
(

UTSRwU
)

(12)
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where xj
i denotes the jth sample in ith class, SRw = XRbDRwXT

Rb
is called RI within-class scatter matrix, the diagonal matrix

DRw = diag

⎛

⎜
⎜
⎝

1

2
∥
∥
∥

(

x1
1 − x̄1

)T
U
∥
∥
∥

2

, . . . ,
1

2

∥
∥
∥
∥

(

xN1
1 − x̄N1

)T
U

∥
∥
∥
∥

2

,

. . . ,
1

2

∥
∥
∥
∥

(

x̄N1
c − x̄c

)T
U

∥
∥
∥
∥

2

, . . . ,
1

2

∥
∥
∥
∥

(

x̄Nc
c − x̄c

)T
U

∥
∥
∥
∥

2

⎞

⎟
⎟
⎠

and the data matrix

XRw =
((

x1
1 − x̄1

)

, . . . ,
(

xN1
1 − x̄N1

)

, . . . ,
(

x1
c − x̄c

)

, . . . ,
(

xNc
c − x̄c

)
)

.

The common optimization criterions in classical discriminant
analysis include maximizing the ratio of between-class scatter
vs. within-class scatter or minimizing the ratio of within-class
scatter vs. between-class scatter [46]. We take the later strategy
in this paper and the objective function of RILDA can be
written as

min
UT U=I

tr
(

UTXRwDRwXT
RwU

)

s.t. tr
(

UTXRbDRbXT
RbU

) = cons. (13)

Equation (13) can be rewritten as the following optimization
problem:

min
UT U=I

tr
(

UTXRwDRwXT
RwU

)

tr
(

UTXRbDRbXT
RbU

) . (14)

As a result, the optimal projections of RILDA are the eigen-
vectors corresponding to the smallest eigenvalue of

(

XRbDRbXT
Rb

)−1
XRwDRwXT

RwU = U� (15)

which can be solved by the standard eigen-decomposition of
the matrix (XRbDRbXT

Rb)
−1XRwDRwXT

Rw.

E. RILPP

LPP aims to preserve the local geometric structure in the
low-dimensional subspace. In LPP, the graph is defined as

Wij =

⎧

⎪
⎨

⎪
⎩

exp
(

−∥∥xi − xj
∥
∥

2/
t
)

or 1, if xi ∈ Nk
(

xj
)

or xj ∈ Nk(xi)

0, otherwise

where t is the heat kernel parameter to measure the
local similarity. In RILPP, the local geometric structure
is preserved by minimizing the weighted RI L1-norm,
which is different from LPP. RILPP aims to minimize

the following numerator:
∑

i

∑

j

∥
∥
∥

(

xi − xj
)T

U
∥
∥
∥

2
Wij

=
∑

i

∑

j

∥
∥
∥Wij

(

xi − xj
)T

U
∥
∥
∥

2
= ∥
∥GRlX

T
R U
∥
∥

2,1

= tr
(

UTXRGRlDRlGRlX
T
R U
) = tr

(

UTSRlU
)

(16)

where SRl = XT
R GRlDRlGRlXR is called RI local scatter matrix,

and the data matrix

XR = ((x1 − x1), . . . , (x1 − xN), . . . ,

(xN − x1), . . . , (xN − xN))T

and

GRl = diag(W11, W12, . . . , W1N, . . . , WN1, WN2, . . . , WNN),

DRl = diag

(

1

2W11
∥
∥(x1 − x1)TU

∥
∥

2

, . . . ,
1

2W1N
∥
∥(x1 − xN)T U

∥
∥

2

,

. . . ,
1

2WN1
∥
∥(xN − x1)T U

∥
∥

2

,

. . . ,
1

2WNN
∥
∥(xN − xN)TU

∥
∥

2

)

.

Note that, in this paper we define (1/(2Wii‖(xi − xi)
TU‖2))×

(xi−xi) = ∞×0 � 0, thus this does not affect the computation
in (16) (similar cases exist in RIMFA).

From the local neighborhood graph W, we can obtain the
diagonal matrix D with the diagonal elements Dii = ∑

i Wij.
The imposed constraint part of RILPP is measured by
∑

i

∥
∥xT

i U
∥
∥

2Dii =
∑

i

∥
∥Diix

T
i U
∥
∥

2 = ∥
∥GRdXTU

∥
∥

2,1

= tr
(

UTXGRdDRdGRdXTU
) = tr

(

UTSRdU
)

(17)

where

GRd = diag(D11, D22, . . . , DNN)

SRd = XGRdDRdGRdXT

and the diagonal matrix

DRd = diag

(

1

2D11
∥
∥xT

1 U
∥
∥

2

,
1

2D22
∥
∥xT

2 U
∥
∥

2

,

. . . ,
1

2DNN
∥
∥xT

NU
∥
∥

2

)

.

With the above preparations, the objective function of RILPP
can be stated as

min
UT U=I

tr
(

UTXRGRlDRlGRlXT
R U
)

tr
(

UTXGRdDRdGRdXTU
) . (18)

The optimal solutions can be obtained by the eigen-
decomposition of

(

XGRdDRdGRdXT)−1
XRGRlDRlGRlX

T
R U = U�. (19)

The optimal projections of RILPP are the eigenvectors corre-
sponding to the smaller eigenvalures of (19).
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F. RIMFA

MFA was introduced in [13] as a representative algorithm
for the graph embedding framework, where the squared dis-
tance between the point pairs in local neighborhood was
measured. When using the RI L1-norm, we can obtain sig-
nificantly different graph embedding method. The interclass
separability and the compactness of RIMFA by using the RI
L1-norm are denoted as SRp and SRc, respectively. With the
same definition of the penalty graph Wp and the compactness
graph Wc as in MFA, the interclass separability SRp is defined
as follows:
∑

i

∑

(i,j)∈Pk1 (ci) or (i,j)∈Pk1 (cj)

∥
∥UTxi − UTxj

∥
∥

2Wp
ij

= tr
(

UTXRGRpDRpGRpXT
R U
) = tr

(

UTSRpU
)

(20)

where

SRp = XRGRpDRpGRpXT
R

GRp = diag
(

Wp
11, Wp

12, . . . , Wp
1N, . . . , Wp

N1, Wp
N2, . . . , Wp

NN

)

DRp = diag

(

1

2Wp
11

∥
∥(x1 − x1)T U

∥
∥

2

, . . . ,
1

2Wp
1N

∥
∥(x1 − xN)T U

∥
∥

2

,

. . . ,
1

2Wp
N1

∥
∥(xN − x1)T U

∥
∥

2

,

. . . ,
1

2Wp
NN

∥
∥(xN − xN)T U

∥
∥

2

)

.

Similarly, the intraclass compactness SRc is defined as follows:

SRc =
∑

i

∑

i∈N+
k2

( j) or j∈N+
k2

(i)

∥
∥
∥xT

i UT − xT
j UT

∥
∥
∥

2
Wc

ij

= tr
(

UTXRGRcDRcGRcXT
R U
) = tr

(

UTSRcU
)

(21)

where

SRc = XRGRcDRcGRcXT
R

GRc = diag
(

Wc
11, Wc

12, . . . , Wc
1N, . . . , Wc

N1, Wc
N2, . . . , Wc

NN

)

DRc = diag

(

1

2Wc
11

∥
∥(x1 − x1)T U

∥
∥

2

, . . . ,
1

2Wc
1N

∥
∥(x1 − xN)T U

∥
∥

2

,

. . . ,
1

2Wc
N1

∥
∥(xN − x1)T U

∥
∥

2

,

. . . ,
1

2Wc
NN

∥
∥(xN − xN)T U

∥
∥

2

)

.

With the above preparation, we obtain the objective function
of RIMFA

min
UT U=I

tr
(

UTXRGRcDRcGRcXT
R U
)

tr
(

UTXRGRpDRpGRpXT
R U
) . (22)

The optimal projections are the eigenvectors corresponding to
the smaller eigenvalues of the following eigenequation:

(

XRGRpDRpGRpXT
R

)−1
XRGRcDRcGRcXT

R U = U�. (23)

G. Unified Framework

In this subsection, we present the unified framework based
on the RI L1-norm. It is easy to find that the objective function
of RIPCA can be rewritten as

min
UT U=I

tr
(

UTXRtGIDRtGIX
T
RtU

)

s.t. tr
(

UTXIGIDIGIX
T
I U
) = cons (24)

where XI , GI and DI are m × m identity matrix
Similarly, the objective function of RILDA can be repre-

sented as

min
UT U=I

tr
(

UTXRwGIwDRwGIwXT
RwU

)

s.t. tr
(

UTXRbGIbDRbGIbXT
RbU

) = cons (25)

where GIw and GIb are the identity matrix with a suitable size.
Comparing the above rewritten RIPCA and RILDA mod-

els and the ones of RILPP and RIMFA, we obtain a unified
framework as follows to conclude all the methods presented
in the above four sections:

min
UT U=I

tr
(

UTXwGwDwGwXT
wU
)

s.t. tr
(

UTXbGbDbGbXT
b U
) = cons (26)

where Xw = (x̃1, . . . ., x̃Nw) and Xb = (∼x1, . . . ., ∼xNb) uniformly
denote the new data matrices in the optimization problems
in (18) and (23)–(25) , respectively. And the diagonal matrices
and the weight matrices defined on the new datasets of Xw

and Xb corresponding to the same way as in RIPCA, RILDA,
RILPP, and RIMFA are uniformly denoted as Dw, Gw and
Db, Gb, respectively. The summation of the algorithms on the
proposed framework is shown in Table I.

Thus, comparing (5) and (6) with (26), we can find that the
graph embedding framework is extended to more generalized
form by using the RI L1-norm, which can be called gener-
alized graph embedding algorithm framework. The proposed
framework can be rewritten as

min
UT U=I

tr
(

UTXwGwDwGwXT
wU
)

tr
(

UTXbGbDbGbXT
b U
) (27)

or

min
tr(UT XbGbDbGbXT

b U)=cons
UT U=I

tr
(

UTXwGwDwGwXT
wU
)

. (28)

Similarly, the optimal solution of the above problem can be
obtained by the eigen-decomposition of eigenequation

(

XbGbDbGbXT
b

)−1
XwGwDwGwXT

wU = U�. (29)

Differing from the graph embedding framework which only
needs to solve a simple (standard or generalized) eigenequa-
tion, the proposed methods need to iteratively solve a series
of (standard) eigenequations since the Dw and Db are corre-
lated to the U in (29) in each iteration. The procedures of
the proposed RI subspace learning algorithm framework are
shown in Table II.

Comparing to the previous graph embedding linear dimen-
sionality reduction framework, the advantage of the gen-
eralized framework proposed in this paper is that it can
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automatically generate the weight matrices derived by the
L2,1 norm in the iterative procedure. These weight matri-
ces are closely related to the intrinsic relationship among the
data points and thus can discover a more effective subspace
for feature extraction and classification.

The proposed methods are significantly different from the
one in reference [42], which mainly focus on the usage of
the L2,1 norm as a regularized term for jointly sparse regres-
sion instead of as a basic metric. This paper also differs
from [25] using the L1 norm as the measurement, and only
the LDA case is discussed in [25]. Moreover, the optimization
methods of this paper and [25] are also diverse far from each
other. Although both this paper and [47] introduce the local-
ity of the data, the goal of [47] is to learn a graph to preserve
the locality instead of to learn a projection matrix for linear
dimensionality reduction. In short, the goal, the objective func-
tion and optimization method of the proposed methods are all
different from those in [25], [42], and [47].

III. THEORETICAL ANALYSIS

In this section, theoretical analyses will be presented to
show the properties of the proposed algorithm framework.
The convergent analysis and the computational complexity are
firstly presented. And then the essence of the framework is
explored. We discuss a special case to explore the equivalence
between the RI subspace learning framework and the previous
graph embedding algorithm framework. At last, it is shown
that the proposed algorithm framework has the global optimal
solution when two scatter matrices are full rank matrices.

A. Convergence of the Algorithm

Since the algorithms are iterative methods, in this section,
we analyze its convergence. Firstly, we need the following
lemma and corollary presented in [38].

Lemma 1: For any nonzero vector a and b, the following
inequality holds:

‖a‖ − ‖a‖2

2‖b‖ ≤ ‖b‖ − ‖b‖2

2‖b‖ . (30)

Corollary 1: For any nonzero vectors ai, bi(i = 1, 2, . . . , N),
the following inequality holds:

∑

i

∥
∥ai
∥
∥−

∑

i

∥
∥ai
∥
∥

2

2
∥
∥bi
∥
∥

≤
∑

i

∥
∥bi
∥
∥−

∑

i

∥
∥bi
∥
∥

2

2
∥
∥bi
∥
∥
. (31)

Theorem 1: The iterative algorithm for the RI L1-norm will
monotonically decrease the objective function value in each
iteration.

Proof: For simplicity, we denote the ith row of matrix A by
Ai, i.e., Ai = A(i, :). Supposed in the t iteration we have

Ut = arg min
tr(UT XbGbDt

bGbXT
b U)=cons

UT U=I

tr
(

UTXwGwDt
wGwXT

wU
)

.

This indicates that

tr
(

UT
t XwGwDt

wGwXT
wUt

)

≤ tr
(

UT
t−1XwGwDt

wGwXT
wUt−1

)

⇒
∑

i

∥
∥
∥

(

GwXT
wUt

)i
∥
∥
∥

2

2
∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

≤
∑

i

∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

2

2
∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

⇒
∑

i

∥
∥
∥

(

GwXT
wUt

)i
∥
∥
∥

−
⎛

⎜
⎝

∑

i

∥
∥
∥

(

GwXT
wUt

)i
∥
∥
∥−

∑

i

∥
∥
∥

(

GwXT
wUt

)i
∥
∥
∥

2

2
∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

⎞

⎟
⎠

≤
∑

i

∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

−
⎛

⎜
⎝

∑

i

∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥−

∑

i

∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

2

2
∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

⎞

⎟
⎠.

According to the Corollary 1, we get the following inequality:
∑

i

∥
∥
∥

(

GwXT
wUt

)i
∥
∥
∥ ≤

∑

i

∥
∥
∥

(

GwXT
wUt−1

)i
∥
∥
∥

⇒ ∥
∥GwXT

wUt
∥
∥

2,1 ≤ ∥
∥GwXT

wUt−1
∥
∥

2,1. (32)

This gives

tr
(

UT
t XwGwDt+1

w GwXT
wUt

)

≤ tr
(

UT
t−1XwGwDt

wGwXT
wUt−1

)

.

That is to say the objective function value
tr(UTXwGwDt

wGwXT
wU) with the constraint of

tr(UTXbGbDbGbXT
b U) = cons will monotonically decrease in

the iteration.
According to Theorem 1, we can conclude that the iter-

ative procedures will converge to the local optimal U of
problems (26) or (28).

B. Computational Complexity Analysis

The main computational complexity of the RI L1-norm
algorithm is to solve the eigenequation of (29). Thus, the
computational complexity is O(m3) for each iteration. If the
algorithm needs T iteration steps, then the total computational
complexity is O(Tm3). As demonstrated in the experimental
section, the algorithms usually converge very fast. Thus T is
usually a smaller number. Therefore, although the computa-
tional complexity of the RI L1-norm is larger than those of
previous algorithms, the proposed algorithms are still efficient
in most cases.

C. Essence of the Framework

In Section II-G, a unified framework is proposed for RI
subspace learning. The following theorem reveals the essence
of the RI subspace learning framework.

Theorem 2: The essences of the RI subspace learning meth-
ods (RIPCA, RILDA, RILPP, and RIMFA) are the reweighted
versions of the corresponding methods (PCA, LDA, LPP, and
MFA, respectively) by rescaling the weights, which are related
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to the original high-dimensional data points and the learned
low-dimensional subspace.

Proof: From (26) we can define

W̃w � GwDwGw = diag

⎛

⎝
Ww

11

2
∥
∥x̃T

1 U
∥
∥
, . . . ,

Ww
NwNw

2
∥
∥
∥x̃T

Nw
U
∥
∥
∥

⎞

⎠ (33)

∼W
b � GbDbGb = diag

⎛

⎝
Wb

11

2
∥
∥∼x

T
1 U
∥
∥
, . . . ,

Wb
NbNb

2
∥
∥
∥∼x

T
Nb

U
∥
∥
∥

⎞

⎠ (34)

where diagonal matrices Ww and Wb are weights on new
data sets Xw and Xb, respectively. Then the two terms in (26)
can be rewritten as

tr
(

UTXwGwDwGwXT
wU
) =

Nw∑

i

∥
∥x̃T

i U
∥
∥

2
W̃w

ii (35)

tr
(

UTXbGbDbGbXT
b U
) =

Nb∑

i

∥
∥∼x

T
i U
∥
∥

2
∼W

b
ii. (36)

These two equations indicate that the scatter values are the
sum of the rescaled scatter of Xw and Xb by the weighted
matrices W̃w and ∼W

b, which are decided by the original
high-dimensional data points and the learned low-dimensional
subspaces.

From Theorem 2, we can find that the RI subspace learning
framework is the reweighted version of the previous graph
embedding framework.

D. Special Case 1: The Equivalence to the Graph
Embedding Algorithm Framework

In this section, we discuss the special case to explore
the equivalence between the RI subspace learning framework
and the previous graph embedding algorithm framework by
ignoring the null space of the data (the original data can be
preprocessed by PCA to remove the null space of the data,
which will be discussed in the next section). We have the
following theorem.

Theorem 3: Suppose N = d � m and U is an m × d
orthogonal matrix spanned by the original data space. If we
define two special graphs using the following weights:

W̃w
ii = ∥

∥x̃T
i

∥
∥ ∗ cons1, ∼W

b
ii = ∥

∥∼xi
∥
∥ ∗ cons2 (37)

where cons1 and cons2 are two constants, then the RI sub-
space learning algorithm framework is equivalent to the graph
embedding algorithm framework.

Proof: From Theorem 2, it is easy to find that we only
need to show whether if there exist some kind of definitions
such that

W̃w = GwDwGw = diag

⎛

⎝
Ww

11

2
∥
∥x̃T

1 U
∥
∥
, . . . ,

Ww
NwNw

2
∥
∥
∥x̃T

Nw
U
∥
∥
∥

⎞

⎠

= I ∗ cons1 (38)

and

∼W
b = GbDbGb = diag

⎛

⎝
Wb

11

2
∥
∥∼x

T
1 U
∥
∥
, . . . ,

Wb
NbNb

2
∥
∥
∥∼x

T
Nb

U
∥
∥
∥

⎞

⎠

= I ∗ cons2. (39)

Since U is a d × m orthogonal matrix spanned by the whole
data space, in this special case, it is easy to see that

∥
∥x̃T

1 U
∥
∥ = ∥

∥x̃T
1

∥
∥, . . . ,

∥
∥x̃T

Nb
U
∥
∥ = ∥

∥x̃T
Nb

∥
∥

∥
∥∼x

T
1 U
∥
∥ = ∥

∥∼x
T
1

∥
∥, . . . ,

∥
∥∼x

T
Nw

U
∥
∥ = ∥

∥∼x
T
Nw

∥
∥.

If and only if we define Ww
ii = ‖x̃T

i ‖ ∗ cons1(i = 1, 2, . . . , Nw),
Wb

ii = ‖∼x
T
i ‖ ∗ cons2(i = 1, 2, . . . , Nb), then we have the fol-

lowing relationship from (18), (19), (35), (36), (38), and (39):

XwGwDwGwXT
w ∝ X

(

D̄w − W̄w)XT (40)

XbGbDbGbXT
b ∝ X

(

D̄b − W̄b
)

XT . (41)

Therefore, these two frameworks are equivalent.
It is obvious that if U does not full fill the data space, then

‖x̃T
i U‖ �= ‖x̃T

i ‖ and ‖∼x
T
i U‖ �= ‖∼x

T
i ‖. Thus, (40) and (41) will

not be satisfied. In this case, the derived subspaces (projec-
tive vectors) of these two frameworks will be different from
each other.

E. Special Case 2: Global Optimal Solution

Since the original data can be preprocessed by PCA
(or RIPCA) such that XwGwDwGwXT

w and XbGbDbGbXT
b are

full rank matrices (or they can add matrix εI so that they are
full rank matrices, where ε is a sufficiently small real num-
ber). Without loss of generality, we suppose these two matrices
are full rank matrices in the RI subspace learning framework.
Then, the proposed algorithm framework has an elegant prop-
erty, which exists in the classic subspace learning methods
such as LDA and LPP. That is, the proposed algorithm frame-
work has a global optimal solution when all the projections
corresponding to the data space are computed.

Theorem 4: Suppose XwGwDwGwXT
w and XbGbDbGbXT

b are
full rank matrices. Since U is an m × m orthogonal matrix
(in the iteration), then the rotation invariant subspace learning
algorithm framework (29) has a global optimal solution (up
to a rotation matrix), and thus the iterative procedures can be
avoided.

Proof: We can initialize the U as the SVD of XbGbDbGbXT
b ,

i.e., XbGbDbGbXT
b = ÛD̂V̂T and let U = Û. Since all the

eigenvectors of the eigenequation (29) span the same subspace
as U and the eigenvectors are orthogonal, it is obvious that
(Ww

ii /2‖x̃T
i U‖) and (Wb

ii/2‖∼x
T
i U‖) are constants. As a result,

XwGwDwGwXT
w and XbGbDbGbXT

b are also invariant in the iter-
ative procedures, thus the eigenvectors are also invariant (up
to a rotation matrix). Since the optimization problem is con-
vex, it has a global optimal solution which can be obtained
by solving the eigenequation (29) only once.

Theorem 4 shows that in this special case, the number of
iteration is 1, which indicates that no any iteration step is
needed. Therefore, the algorithms will become simpler and
more efficient. In this special case, the essential difference
between the graph embedding algorithm framework and the RI
subspace learning framework is that the later needs an orthog-
onal matrix for initialization so as to compute the eigenvectors
but the former can directly compute the eigenvectors. Another
difference is the RI subspace learning framework learns the
orthogonal projections by standard eigen-decomposition
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Fig. 2. Image samples used in the experiments. (a) FERET face database. (b) CMU PIE face database. (c) COIL100 objective image database. (d) Binary
alpha image database. (e) LFW face database.

while the graph embedding framework obtains the
nonorthogonal projections since it solves the generalized
eigen-function.

IV. EXPERIMENTS

In this section, a set of experiments are presented to show
the effectiveness of the proposed RI subspace learning algo-
rithms for image feature extraction and recognition against the
classical subspace learning methods (i.e., PCA and LDA), the
most related manifold learning methods (i.e., LPP and MFA).
The FERET face database is used to explore the robustness
of the proposed RI subspace learning algorithms on the varia-
tions in expressions and illumination. The CMU PIE (Pose29,
light, and illumination change) face database is used to evalu-
ate the performance of these methods when face poses and
lighting conditions vary dramatically. The COIL100 objec-
tive image database is employed to test the performance of
these algorithms when there are rotational variations. The
binary alpha digits image database and label faces in the
wild (LFW) database [48] are used to test the robustness of
the proposed algorithms when there are very similar images
of different objectives. The nearest neighbor classifier with
the Euclidean distance is used in all the experiments. The
MATLAB codes of the proposed methods can be available
from http://www.scholat.com/laizhihui.

A. Description of the Databases

The FERET face database is a result of the FERET pro-
gram, which was sponsored by the U.S. Department of
Defense through the DARPA program [49]. It has become
a standard database for testing and evaluating state-of-the-
art face recognition algorithms. The proposed method was
tested on a subset of the FERET database. This subset
includes 1400 images of 200 individuals (each individual has
seven images) and involves variations in facial expression,

illumination, and pose. In the experiment, the facial portion
of each original image was automatically cropped based on
the location of the eyes, and the cropped images was resized
to 40 × 40 pixels. The sample images of one person are shown
in Fig. 2(a).

The CMU PIE face database [50] contains 68 individ-
ual with 41 368 face images as a whole. The face images
were captured under varying pose, illumination and expres-
sion. In our experiments, we select a subset (C29) which
contains1632 images of 68 individuals (each individual has
24 images). The C29 subset involves variations in illumina-
tion, facial expression and pose. All of these face images are
aligned based on eye coordinates and cropped to 32 × 32.
Fig. 2(b) shows the sample images from this database.

The COIL100 objective image database (http://www.
cs.columbia.edu/CAVE/software/softlib/coil-100.php) consists
of 100 × 72 = 7200 images of 100 objects where the
images of the object were taken at pose intervals of 5◦, i.e.,
72 poses per object. The original mages were normalized to
be 128 × 128 pixels. Some sample images of five objects are
shown in Fig. 2(c). All images are converted to a gray-scale
image of 32 × 32 pixel for computational efficiency in the
experiments.

Binary alpha digits image database (http://www.cs.nyu.edu/
∼roweis/data.html) is composed of 1404 binary images of
handwritten digits from “0” to “9” and also characters from
“A” to “Z,” totally 36 classes. Each object has 39 images.
The resolution of each image is 20 × 16 pixels. Some sample
images are shown in Fig. 2(d).

The LFW database contains images of 5749 different indi-
viduals in unconstrained environment [48]. A subdatabase
with 158 subjects from LFW-a is used in this paper. The final
size of images is normalized to be 32 × 32 and no other
preprocessing is performed on the images since we want to
test the robustness of the proposed algorithms. Some sample
images of LFW-a database are shown in Fig. 2(e).

http://www.scholat.com/laizhihui
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
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TABLE IV
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, AND DIMENSION]

OF DIFFERENT ALGORITHMS ON CMU PIE DATA SET

TABLE V
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, AND DIMENSION]

OF DIFFERENT ALGORITHMS ON COIL100 DATA SET

TABLE VI
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, AND DIMENSION]

OF DIFFERENT ALGORITHMS ON BINARY ALPHA DIGITS DATA SET

TABLE VII
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, AND DIMENSION]

OF DIFFERENT ALGORITHMS ON LFW FACE DATA SET

B. Experiment Setup

In the experiments, L images of each individual were ran-
domly selected and used as the training set, and one half
of the remaining images were used as the validation set
and test set, respectively. The best parameters determined
by the validation set were used to learning the projec-
tions for feature extraction and classification. The L was
set as different numbers according the size of each individ-
ual/object on the data sets. That is, L = 3, 4, 5, L = 4, 5, 6,

L = 6, 8, 10, 12, and L = 10, 15, 20, 25 for FERET, CMU
PIE, COIL100, and binary alpha digits image databases,
respectively.

For improving the computational efficiency and avoiding
the singular problem, the data were preprocessed by using
PCA to preserve most of the image energy to pursuit the best

performance of each method. The neighborhood parameters
were selected from the set {1, 2, . . . , 6, 23, 24, . . . , N − 1}.
The numbers of final subspace dimensions for FERET, CMU
PIE and LFW-a face databases were varied from 5 to 200 with
step 5. For COIL100 and binary alpha digits image databases,
the numbers of the final subspace dimensions were varied from
10 to 40 with step 1 since the dimensions corresponding to the
best recognition rates are in this range. In each run, the best
parameters determined by the validation set were used to learn
the optimal projections for feature extraction. The algorithms
were independently run 10 times. And the average recognition
rate, standard deviation and the corresponding dimension on
the test set are reported in Tables III–VII. The recognition
rates versus the variations of the dimensions are also shown
in Figs. 3 and 4.
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Fig. 3. Average recognition rates (%) versus the variations of the dimensions. (a) Five training samples on the FERET face database. (b) Six training samples
on CMU PIE face database.

Fig. 4. Average recognition rates (%) versus the dimensions. (a) 12 training samples on the COIL100 image databases. (b) 25 training samples on binary
alpha image databases.

C. Experimental Result and Analysis

From the above tables and the figures, we can obtain some
interesting observations and conclusions.

1) The RI dimensionality reduction framework using the
L1 norm or L2,1 norm performs better than the graph
embedding algorithm framework which uses the
Frobenius norm as the measurement. As can be found
from the top recognition rates listed in the tables,
the highest recognition rate in each case is always
achieved by the newly proposed RI feature extraction
algorithms. In most cases, RIPCA performs better than
(denote as “>”) PCA, RILPP>LPP, RILDA>LDA, and
RIMFA>MFA. This indicates that using RI L1 norm
or L2,1 norm as a measurement does obtain better
performance in feature extraction, no matter there are
variations in expression, pose and illumination or rota-
tions of the images. Thus the proposed RI subspace
learning algorithms are more robust than the compared
algorithms in these cases.

2) As can be seen from Figs. 3 and 4, RI algorithms
usually achieve higher recognition rate in a lower dimen-
sional subspace compared with the previous algorithms.

This phenomenon is consistent on the four databases and
more salient in FERET and COIL100 databases. This
indicates that RI subspace learning methods have more
powerful ability in dimensionality reduction.

3) Though the proposed algorithms perform better than the
corresponding ones based on the L2 norm, there are the
cases where the formers obtain only similar performance
to the latter (or even the formers obtain slightly lower
recognition rates). The key reason may be the extremely
lack of training samples. For example, on the FERET
face database, RILPP performs better than LPP when
there are five training samples per individual, but it
obtains lower recognition rate when there are only three
and four training samples per individual. Another impor-
tant reason is that there lacks discriminant information
for RILPP to guard the algorithm to assign a suitable
weighted matrix Dw to enhance the discriminate ability.
That is, only to enhance the robustness for preserving the
locality in RILPP cannot guarantee to obtain the stronger
discriminant ability than LPP in some special cases.

4) Using the discriminant information, RILDA and
RIMFA usually perform better than LDA and MFA in
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Fig. 5. Recognition rates versus the neighborhood size on binary alpha image database. (a) RILPP. (b) RIMFA.

Fig. 6. Convergence on (a) FERET face data set and (b) binary alpha data set.

all cases. This indicates that introducing the L2,1 norm
to the Fisher criterion for discriminant feature extrac-
tion can enhance the accuracy in image recognition.
But using the different criterions in the RI subspace
learning, the accuracies of different methods are usu-
ally different from each other. Strictly speaking, among
the RI dimensionality reduction methods, there is no
complete winner that can always perform the best in
all kinds of scenarios (or in all the databases). The
essential reason for the excellent performance of RILDA
and RIMFA is that they use the label information in
their criterions and a better weighted matrix Dw could
be signed to the data points to reduce the influence of
the outliers, or the variations of illumination, pose and
expression in face images or the variation of the object’s
rotations.

5) For the extremely case as in LFW-a dataset, where
facial images exhibit extreme pose, illumination and
background variations, occlusions, and inaccurate align-
ment, the recognition rates reported in Table VII
show that the proposed methods also perform much
better than the classical methods. About 20 percent-
age points on the recognition rates are increased
by the proposed methods. This indicates that the
L2,1 norm as a metric is more robust than L2
norm in subspace learning for potential real world
applications.

D. Parameters Sensitivity Study

In the proposed RI dimensionality reduction framework, we
present four methods. Among these methods, the parameter
d, i.e., the number of dimension, is an important parameter in
the models. From Figs. 2–4, we can find that this parameter
significantly varies on different databases. This phenomenon
demonstrates that the parameter sensitivity is presumably
related to the properties of the different data sets, and there
is no consistent rule suitable for different database. However,
another important parameter, i.e., the neighborhood size, in
RILPP and RIMFA has a certain rule. Usually, as shown in
Fig. 5, when the local neighborhood size is set to about 5,
RILPP and RIMFA can achieve better performances. Similar
properties can also be found in LPP and MFA. This indi-
cates that RILPP and RIMFA inherit similar local geometric
preserving properties from LPP and MFA.

E. Convergence Study

As indicated in the previous section, the objective function
of the proposed framework will converge to the local optimum.
For practical applications it is very interesting for us to show
how fast our algorithm converges.

Fig. 6 shows the convergence curves of our optimiza-
tion algorithm with respect to the objective function value.
Fig. 6(a) and (b) shows the convergent properties of the
representative method, i.e., RIMFA, on FERET and binary
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alpha digits image databases. It can be found that the pro-
posed method converges very fast. Similar properties can be
found in other algorithms. Generally, the proposed framework
can converge within as few as 3–5 iterations.

V. CONCLUSION

In this paper, we develop four linear dimensionality reduc-
tion methods, i.e., RIPCA, RILDA, RILPP, and RIMFA. Then
a novel dimensionality reduction framework using the RI L1
norm or L2,1 norm is proposed. Comprehensive analyses,
including theoretical analyses on the convergence, compu-
tational complexity and the essence of the framework, are
presented. Particularly, when all the projections are computed
and used, the proposed framework has global optimal solution.
The proposed framework inherits the simplicity of the previ-
ous Frobenius norm based graph embedding learning methods.
We show that the RI dimensionality reduction framework can
be degraded to the graph embedding algorithm framework by
defining a special weight for each pair of data points. The
proposed framework is easy to solve since it just needs to
iteratively solve the standard eigenequation. Experiments on
five image databases show that the RI dimensionality reduction
framework (or the four representative methods proposed in this
paper, i.e., RIPCA, RILDA, RILPP, and RIMFA) can perform
better than the previous graph embedding algorithm frame-
work (or the corresponding four methods, i.e., PCA, LDA,
LPP, and MFA) in most cases.
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